Package: batchmix 2.2.0
batchmix: Semi-Supervised Bayesian Mixture Models Incorporating Batch Correction
Semi-supervised and unsupervised Bayesian mixture models that simultaneously infer the cluster/class structure and a batch correction. Densities available are the multivariate normal and the multivariate t. The model sampler is implemented in C++. This package is aimed at analysis of low-dimensional data generated across several batches. See Coleman et al. (2022) <doi:10.1101/2022.01.14.476352> for details of the model.
Authors:
batchmix_2.2.0.tar.gz
batchmix_2.2.0.zip(r-4.5)batchmix_2.2.0.zip(r-4.4)batchmix_2.2.0.zip(r-4.3)
batchmix_2.2.0.tgz(r-4.4-x86_64)batchmix_2.2.0.tgz(r-4.4-arm64)batchmix_2.2.0.tgz(r-4.3-x86_64)batchmix_2.2.0.tgz(r-4.3-arm64)
batchmix_2.2.0.tar.gz(r-4.5-noble)batchmix_2.2.0.tar.gz(r-4.4-noble)
batchmix_2.2.0.tgz(r-4.4-emscripten)batchmix_2.2.0.tgz(r-4.3-emscripten)
batchmix.pdf |batchmix.html✨
batchmix/json (API)
# Install 'batchmix' in R: |
install.packages('batchmix', repos = c('https://stcolema.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/stcolema/batchmix/issues
Last updated 6 months agofrom:fe1d3e776e. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win-x86_64 | NOTE | Nov 08 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 08 2024 |
R-4.4-win-x86_64 | NOTE | Nov 08 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 08 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 08 2024 |
R-4.3-win-x86_64 | NOTE | Nov 08 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 08 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 08 2024 |
Exports:batchSemiSupervisedMixtureModelcalcAllocProbcheckDataGenerationInputscheckProposalWindowscollectAcceptanceRatescontinueChaincontinueChainscreateSimilarityMatgammaLogLikelihoodgenerateBatchDatagenerateBatchDataLogPoissongenerateBatchDataMVTgenerateBatchDataVaryingRepresentationgenerateGroupIDsInSimulatorgenerateInitialLabelsgetLikelihoodgetSampledBatchScalegetSampledBatchShiftgetSampledClusterMeansinvGammaLogLikelihoodinvWishartLogLikelihoodminVIplotAcceptanceRatesplotLikelihoodsplotSampledBatchMeansplotSampledBatchScalesplotSampledClusterMeansplotSampledParameterpredictClasspredictFromMultipleChainsprepareInitialParametersprocessMCMCChainprocessMCMCChainsrStickBreakingPriorrunBatchMixrunMCMCChainssampleMVNsampleMVTsamplePriorLabelssampleSemisupervisedMVNsampleSemisupervisedMVTVI.lbwishartLogLikelihood
Dependencies:clicolorspacecpp11dplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerRcppRcppArmadillorlangsalsoscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr